The clinical and biomarker approach to predict sepsis mortality in pediatric patients

  • Irene Yuniar Division of Pediatric Emergency and Intensive Care, Department of Child Health, dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine University of Indonesia https://orcid.org/0000-0002-0880-333X
  • Mulya Rahma Karyanti Division of Pediatric Infection Diseases, Department of Child Health, dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine University of Indonesia https://orcid.org/0000-0002-7194-9403
  • Nia Kurniati Division of Allergy Immunology, Department of Child Health, dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine University of Indonesia https://orcid.org/0000-0002-6380-6672
  • Desti Handayani Department of Child Health, Mohammad Hoesin General Hospital, Palembang https://orcid.org/0000-0003-3011-3463
Keywords: Mortality, pediatric sepsis, PELOD-2 score, clinical predictor

Abstract

Background Sepsis is a leading cause of pediatric morbidity and mortality. The prevalence of sepsis mortality in Indonesia varies between 22.5 to 52%.

Objective To identify the clinical criteria for predicting sepsis mortality and evaluate the performance of the PELOD-2 score.

Methods This retrospective cohort study included pediatric patients admitted to the emergency department or pediatric intensive care unit (PICU) of Cipto Mangunkusumo Hospital, Jakarta, Indonesia, from January 2015 to May 2020. Demographic characteristics (age and sex), clinical manifestations [nutritional status, presence of shock, need for intubation, source of infection, inotrope use, mean arterial pressure, pulse rate, respiratory rate, and Glasgow Coma Scale (GCS) score], laboratory [leukocyte, platelet, neutrophil, and lymphocyte counts, neutrophil-to-lymphocyte count ratio (NLCR), procalcitonin, C-reactive protein (CRP), and lactate profile], PELOD-2 score, and mortality data were recorded as outcomes.

Results We analyzed data from 241 sepsis subjects. The overall mortality rate was 65%. Shock [OR 3.2 (95%CI 1.80 to -5.55, P<0.001)], GCS <9 [OR 2.4 (95%CI 1.30 to 4.23, P=0.005)],  inotrope use [OR 3.1 (95%CI 1.74 to 5.5, P<0.001)], CRP >33.5 mg/L [OR 2.5 (95%CI 1.14  to 5.35, P=0.02)], and lactate level >2.85 [OR 2.1 (95%CI 1.02 to 4.56, P=0.04)] were considered significant predictors of mortality. A PELOD-2 cut-off score of >8 had optimal sensitivity (81.2%) and specificity (72.9%) to predict mortality, with an OR of 11.6 (95%CI 5.72 to 23.5, P<0.001).

Conclusion Shock, GCS score, inotrope use, CRP, and lactate level can serve as clinical biomarkers to predict mortality in pediatric sepsis. A PELOD-2 score of >8 can predict mortality with reasonably good sensitivity and specificity.

References

1. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. 2018;6:223-30. DOI: hppts://doi.org/10.1016/S2213-2600(18)30063-8.
2. Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis. Pediatr Crit Care Med. 2013;14:686-93. DOI: hppts://doi.org/10.1097/PCC.0b013e3182917fad.
3. Ruth A, McCracken CE, Fortenberry JD, et al. Pediatric severe sepsis: current trends and outcomes from the Pediatric Health Information Systems database. Pediatr Crit Care Med. 2014;15:828-38. DOI: hppts://doi.org/10.1097/PCC.0000000000000254.
4. Balamuth F, Weiss SL, Neuman MI, Scott H, Brady PW, Paul R, et al. Pediatric severe sepsis in U.S. children's hospitals. Pediatr Crit Care Med. 2014;15:798-805. DOI: hppts://doi.org/10.1097/PCC.0000000000000225.
5. Magee JC, Krishnan SM, Benfield MR, Hsu DT, Shneider BL. Pediatric transplantation in the United States, 1997-2006. Am J Transplant. 2008;8:935-45. DOI: hppts://doi.org/10.1111/j.1600-6143.2008.02172.x
6. Wen SW, Smith G, Yang Q, Walker M. Epidemiology of preterm birth and neonatal outcome. Semin Fetal Neonatal Med. 2004;9:429-35. DOI: hppts://doi.org/10.1016/j.siny.2004.04.002.
7. Gudiol C, Bodro M, Simonetti A, González-Barca E, Cisnal M, Domingo-Domenech E, et al. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect. 2013;19:474-9. DOI: hppts://doi.org/10.1111/j.1469-0691.2012.03879.x.
8. Kunz AN, Brook I. Emerging resistant Gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy. 2010;56:492-500. DOI: hppts://doi.org/10.1159/000321018.
9. Thavamani A, Umapathi KK, Dhanpalreddy H, Khatana, Jasmine, Chotikanatis, et al. Epidemiology, clinical and microbiologic profile and risk factors for inpatient mortality in pediatric severe sepsis in the United States from 2003 to 2014: a large population analysis. Pediatr Infect Dis J. 2020;39:781-8. DOI: hppts://doi.org/10.1097/inf.0000000000002669.
10. Cruz AT, Perry AM, Williams EA, Graf JM, Wuestner ER, Patel B. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127:e758-66. DOI: hppts://doi.org/10.1542/peds.2010-2895.
11. Ames SG, Davis BS, Angus DC, Carcillo JA, Kahn JM. Hospital variation in risk-adjusted pediatric sepsis mortality. Pediatr Crit Care Med. 2018;19:390-6. DOI: hppts://doi.org/10.1097/PCC.0000000000001502.
12. Evans IVR, Phillips GS, Alpern ER, Angus DC, Friedrich ME, Kissoon N, et al. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA. 2018;320:358-67. DOI: hppts://doi.org/10.1001/jama.2018.9071.
13. Prout AJ, Talisa VB, Carcillo JA, Mayr FB, Angus DC, Seymour CW, et al. Children with chronic disease bear the highest burden of pediatric sepsis. J Pediatr. 2018;199:194-9 e1. DOI: hppts://doi.org/10.1016/j.jpeds.2018.03.056.
14. Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21:e52-e106. DOI: hppts://doi.org/10.1097/PCC.0000000000002198.
15. Goldstein B, Giroir B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2-8. DOI: hppts://doi.org/10.1097/01.PCC.0000149131.72248.E6.
16. Singer M, Deutschman CS, Seymour CW, Hari MS, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801-10. DOI: hppts://doi.org/10.1001/jama.2016.0287.
17. Patriawati K, Nurnaningsih N, Suryantoro P. Serial blood lactate level as a prognostic factor for sepsis mortality. Paediatr Indones. 2014;54:168-73. DOI: hppts://doi.org/10.14238/pi54.3.2014.168-73.
18. Saraswati DD PA, Djer MM, Supriyatno, et al. Faktor resiko yang berperan pada mortalitas sepsis. Sari Pediatri. 2014;15:281-8.
19. Devina T, Lubis M, Mutiara E, Yanni GN, Saragih RA, Trisnawati Y, et al. Red cell distribution width and mortality in pediatric sepsis. Paediatr Indones. 2016;56:320-4. DOI: hppts://doi.org/10.14238/pi56.6.2016.320-4
20. Yuniar I. Epidemiology of pediatric sepsis in pediatric intensive care unit FKUI-RSCM. Prosiding Pertemuan Ilmiah Tahunan IV Ilmu Kesehatan Anak. Medan: USU Press; 2010. p.47
21. Weiss SL, Fitzgerald JC, Maffei FA,Kane JM, Nunez AR, Hsing DD, et al. Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study. Crit Care. 2015;19:325. DOI: hppts://doi.org/10.1186/s13054-015-1055-x.
23. Schlapbach LJ, Weiss SL, Wolf J. Reducing collateral damage from mandates for time to antibiotics in pediatric sepsis-primum non nocere. JAMA Pediatr. 2019;173:409-10. DOI: hppts://doi.org/10.1001/jamapediatrics.2019.0174.
24. Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019;45:82-5. DOI: hppts://doi.org/10.1007/s00134-018-5213-x.
25. Schlapbach LJ, MacLaren G, Festa M, Alexander J, Erickson S, Beca J, et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017;43:1085-96. DOI: hppts://doi.org/10.1007/s00134-017-4701-8.
26. Bai Z, Zhu X, Li M, Hua J, Li Y, Pan J, et al. Effectiveness of predicting in-hospital mortality in critically ill children by assessing blood lactate levels at admission. BMC Pediatr. 2014;14:83. DOI: hppts://doi.org/10.1186/1471-2431-14-83.
27. Scott HF, Brou L, Deakyne SJ, Kempe A, Fairclough DL, Bajaj L. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr. 2017;171:249-55. DOI: hppts://doi.org/10.1001/jamapediatrics.2016.3681.
28. Lamontagne F, Day AG, Meade MO, Cook DJ, Guyatt GH, Hylands M, et al. Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intensive Care Med. 2018;44:12-21. DOI: hppts://doi.org/10.1007/s00134-017-5016-5.
29. Ramaswamy KN, Singhi S, Jayashree M, Bansal A, Nallasamy K. Double-blind randomized clinical trial comparing dopamine and epinephrine in pediatric fluid-refractory hypotensive septic shock. Pediatr Crit Care Med. 2016;17:e502-e12. DOI: hppts://doi.org/10.1097/PCC.0000000000000954.
30. Ventura AM, Shieh HH, Bousso A, Goes PC, Fernandes IDC, Souza DC, et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med. 2015;43:2292-302. DOI: hppts://doi.org/10.1097/CCM.0000000000001260.
Published
2023-03-06
How to Cite
1.
Yuniar I, Karyanti M, Kurniati N, Handayani D. The clinical and biomarker approach to predict sepsis mortality in pediatric patients. PI [Internet]. 6Mar.2023 [cited 29Feb.2024];63(1):37-4. Available from: https://www.paediatricaindonesiana.org/index.php/paediatrica-indonesiana/article/view/2781
Section
Emergency & Pediatric Intensive Care
Received 2021-09-30
Accepted 2023-03-06
Published 2023-03-06